

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Beyond Nyquist – Accelerating Magnetic Resonance Imaging

Sebastian Kozerke

Institute for Biomedical Engineering, University and ETH Zurich, Switzerland Imaging Sciences and Biomedical Engineering, King's College London, UK

lt's useful...

R. Manka, G. Crelier

Magnetic Resonance Imaging

Encoding

Encoding

Data	Encoding	Object
d _ĸ	$= \int e^{j\vec{k}_{\kappa}\cdot\vec{x}}$	$\rho(\vec{x})d\vec{x}$
d _ĸ	$=\sum_{\xi} e^{j\vec{k}_{\kappa}\cdot\vec{x}_{\xi}}$	$\rho(\vec{\mathbf{x}}_{\xi})$
d	= E	ρ

Decoding

Linear decoding

Transform coding

Madore B et al. MRM 1999 Tsao J et al. MRM 2002

Harry Nyquist 1889-1976

Transform coding

n=1

Linear decoding

Tsao J et al. MRM 2003 Kozerke S et al. MRM 2004 Pedersen H et al. MRM 2009

k-t PCA

Pedersen H et al. MRM 2009 Vitanis V et al. IEEE 2010 Giese D et al. MRM 2013 Knobloch V et al. MRM 2013

Nonlinear decoding

Lustig M et al. MRM 2007 Gamper U et al. MRM 2008 Otazo R et al. ISMRM 2013

Compressed Sensing

Undersampling progress – Cardiac

Kellman P et al. MRM 2004Plein S et al. MRM 2007Plein S et al. Radiology 2005Jung B et al. JMRI 2008

Nayak KS et al. JCMR 2008 Vitanis V et al. MRM 2010 Otazo R et al. MRM 2010 Lingala SG et al. IEEE 2011

Reconstruction accuracy

R=1

R=16

J. Busch et al. MRM 2013

Divergence-free image reconstruction

Divergence-free image reconstruction

J. Busch et al. MRM 2013

Image reconstruction in non-linear feature spaces

Image space

Non-linear feature space

$$\vec{i} \rightarrow \vec{i}_{n+1} = \mathcal{P}_{kPCA}(\vec{i}_n - E^H(\vec{Ei}_n - \vec{d}))$$

Schmidt J et al. PLOS ONE 2016

Image reconstruction in non-linear feature spaces

Schmidt J et al. PLOS ONE 2016

Time

3D dynamic perfusion imaging

5x 2D k-t SENSE (1.1 x 1.1 mm²)

Plein S et al. MRM 2008, Radiology 2009

k-t PCA

10x k-t PCA (2.2x2.2x10 mm³)

Vitanis V et al. MRM 2011, Manka R et al. JACC 2011, Jogyia R et al. JACC 2012

3D Perfusion trial

3D Perfusion Multi-centre study

Manka R et al. Circ CVI 2015

10x 3D k-t PCA (2.2 x 2.2 mm²)

Schmidt JF et al. MRM 2013

Generic matrix description of motion

Batchelor P et al. MRM 2005 Schmidt JF et al. MRM 2011

Data-driven motion correction

k-t PCA^{mc}

Schmidt JF et al. MRM 2013

Data-driven motion correction

10x 3D k-t PCA

10x 3D k-t PCAmc

Schmidt JF et al. MRM 2013

3D MR Perfusion + CT Angiography

Manka R et al. Eur Heart J 2011

Time

Chemical shift

Cell respiration

¹H, ¹⁹F, ³¹P, ¹³C

0.1-1 mM

Dissolution Dynamic Nuclear Polarization

Ardenkjaer-Larsen JH et al. PNAS 2003

Prototype polarizer

Batel M et al. JMR 2012

Dissolution dynamic nuclear polarization

Wespi P, Steinhauser J et al.

Weiss K et al. JAMR 2012

O h-Ici D et al. Radiology 2015

From bench to bedside

Nelson SJ et al. Science Transl Med 2013

Blood flow quantification – relative pressure maps

Flow field

Boundaries

Pressure field

Crelier G et al. GyroTools

Blood flow quantification

Pre operation

Post operation

Manka R, Busch J et al. Eur Heart J 2013

Blood flow quantification

Diffusion

Velocity compensated diffusion-weighted spin-echo

Gamper U et al. MRM 2007

Conformal mapping

Dynamic Diffusion Tensor Imaging

Stoeck C et al. PLOS ONE 2014

Laminar and turbulent flows

Universal signal model

Dyverfeldt P et al. MRM 2006

Bayesian parameter estimation

$$P(\Theta, \mathbf{B} \mid M, I) = \frac{P(\Theta, \mathbf{B} \mid I) P(M \mid \Theta, \mathbf{B}, I)}{(M \mid I)} \quad \Theta = [\sigma, v]$$
Incorporate bounds of parameters
$$P(M \mid I)$$
Incorporate knowledge about the noise
$$\int d\sigma_n d\mathbf{B}$$

$$P(\Theta \mid M, I)$$

Binter C et al. MRM 2012

Bayesian multi-point velocity encoding

Aortic valves in-vitro

St. Judes Medical®

Edwards® Sapien

TKE [J/m³]

Binter C et al. SCMR 2012

Aortic valves in-vivo

Energy Loss index

Binter C et al. SCMR 2012

Image-guided modeling and prediction

Genet M et al. J Applied Physiol 2014, J Biomech 2015

Big Data Processing

Acknowledgements

University and ETH Zurich

- Christian Stoeck
- Patrick Wespi
- Johannes Schmidt
- Verena Knobloch
- Max Fuetterer
- Julia Busch
- Lukas Wissmann
- Christian Binter
- Rudolf Fischer
- Michael Batel
- Marcin Krajewski
- Matthias Ernst
- Martin Buehrer
- Gerard Crelier
- Klaas Pruessmann

King's College London

Daniel Giese Claudio Santelli Constantin von Deuster Darach O'h-ici Nicolas Toussaint Sven Plein

University Hospital Zurich

Robert Manka Markus Niemann

Funding

SNF KTI/CTI EU FP7 EPSRC PHILIPS